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We study the local stability of a sessile droplet with nonvanishing line tension along the contact line, where
three phases are in equilibrium. We confirm Widom’s results �J. Phys. Chem. 99, 2803 �1995�� on the local
stability of a droplet with positive line tension in a larger class of perturbations. When the line tension is
negative, we prove that the restricted class of perturbations employed by Widom fails to capture the instability
of equilibria. A notion of residual stability is introduced, which makes quantitative the condition under which
equilibrium of droplets with negative line tension are likely to be observed.

DOI: 10.1103/PhysRevE.73.021602 PACS number�s�: 68.08.Bc

I. INTRODUCTION

The stability of sessile droplets is a major topic in wetting
science. Although this is a topic with a long history, in the
past few years it has received renewed attention because new
challenges have been posed by the availability of experimen-
tal techniques able to explore reliably length scales in the
micrometer range and by the urge of technological applica-
tions in nanofluids. Section 2 of �1� reviews applications that
directly involve line-tension effects. As a consequence, the
classical problem of finding the equilibrium of a sessile drop-
let on a flat, homogeneous substrate has been revived, and a
plethora of new phenomena, challenging both physicists and
mathematicians, has been revealed.

We are mostly concerned with the effects of line tension
on the equilibrium and stability of droplets. Line tension was
originally introduced by Gibbs in his seminal paper �2� by
analogy with surface tension. In fact, as surface tension mea-
sures the excess free energy along an interface separating
two distinct phases, line tension measures the excess free
energy along a contact line where three distinct phases coex-
ist in equilibrium. In �2�, Gibbs also heeded an important
difference between surface and line tensions: while the
former must be positive, the latter can have either sign.

Accounting for line tension affects the equilibrium of
droplets, since Young’s equation, which governs the shape of
the contact line, is altered. The generalized Young’s equation
establishes a relation between line tension and the droplet’s
contact angle, which also involves the geometric properties
of the contact line. Line-tension measurements are based
upon this equation and for several reasons—above all, the
small length scales at which the effects of line tension are
perceptible—they provided values of either sign also differ-
ing from one another by several orders of magnitude.

The main theoretical objection against a negative line ten-
sion is that the free-energy functional—whose minima
should represent stable, and hence observable, equilibria—is
unbounded from below, so that every equilibrium configura-
tion can be made unstable by suitably selecting a perturbing
mode �3,4�. The crucial point, however, is to determine the
typical length associated with destabilizing modes. If this
length is shorter than a typical microscopic length �mic, the
instability is simply inconsistent with the continuum model
that describes the droplet’s equilibria. The microscopic
length �mic can be identified with the intrinsic width of the
contact line �5�; experimental estimates for it range from 1 to
100 times the molecular length �mol �6�. Below, whenever we
need a specific estimate for �mic, we shall use the average
value �mic�50�mol.

More specifically, even the hypothesis of constant surface
tension is tenable only if the size of the droplet is much
larger than the range of intermolecular forces �7�, and indeed
curvature corrections have been considered for surface ten-
sion �8�. Similar corrections were introduced long ago for
line tension too �9�, but this formal theory has too many
parameters to be tractable. Here all these corrections are ig-
nored.

This paper has a different objective; it builds upon a sta-
bility criterion worked out in �10� and applied in �11� to
explore the stability of liquid bridges in the presence of line-
tension. This criterion is general enough to cover line-tension
effects as well as inhomogeneities and arbitrary shapes of the
substrate. A similar criterion was later introduced in �12� and
recently applied to the stability of liquid bridges �also called
liquid filaments�, where it led to conclusions consistent with
ours �6�. Sekimoto, Oguma, and Kawasaki �13� had also per-
formed a stability analysis. While they covered several wet-
ting morphologies, by considering even doughnut droplets,
their analysis was restricted to homogeneous, flat substrates
and, more importantly, it was confined to small contact
angles, while no similar restriction is imposed in �10�.

We consider a sessile droplet lying on a homogeneous,
rigid, flat substrate, in the presence of line tension. This
problem has been already studied by Widom in �7�. He com-
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pared the free energy of a sessile droplet with nonzero line
tension and that of a spherical droplet with the same volume.
He found a first-order drying transition occurring when the
line tension exceeds a positive critical value. For negative
line tensions, the sessile droplet was found to be locally
stable with respect to perturbations that preserve the spheri-
cal shape of its free surface. For positive line tensions, Wi-
dom found two equilibria, of which only one is metastable,
provided that the line tension does not exceed a threshold,
beyond which no equilibrium configuration exists. These
conclusions were arrived at within the rather specific class of
perturbations that map spheres into spheres. Strictly speak-
ing, these results can only be interpreted as necessary condi-
tions for stability.

It is the aim of this paper to examine to which extent the
class chosen by Widom captures the stability of sessile drop-
lets laid on a flat substrate. We employ a local stability cri-
terion, suitable to detect metastability limits, which allows
perturbations far more general than Widom’s. As a result,
while we confirm Widom’s metastability limits when the line
tension is positive, we detect unstable modes when the line
tension is negative.

For every negative value of the line tension, there are
destabilizing modes that make the droplet’s contact line in-
creasingly corrugated. This statement, plain as it may appear,
calls for a careful interpretation. Whenever use is made of a
continuum model, all length scales it involves should be
larger than the typical microscopic length �mic, at which scale
a continuum approach would be unrealistic. The perturbing
modes should also be treated accordingly �6�. Modes with a
characteristic wavelength smaller than �mic will here be dis-
carded, as they induce perturbations existing outside the
realm of validity of a continuum approach. To ensure com-
patibility to the continuum model employed here, both length
scales it conceals—that is, the typical size R of a droplet and
the ratio ��� between the magnitudes of line and surface
tensions—must be larger than �mic. Assessing the smallest
wavelength �m of a perturbing mode of the droplet turns out
to be slightly more involved than one would intuitively an-
ticipate. We found it convenient arriving at �m through the
notion of residual stability and an associated integer index
that measures its degree. Any equilibrium configuration of
the droplet is said to be residually stable if there is at least
one stable mode. The highest index of all stable modes is the
index of residual stability. An equilibrium configuration is
stable only if all modes are stable. The main outcome of our
study is to show that a droplet is residually stable provided
that the line tension, when negative, is small in magnitude.
Residual stability has the potential to explain experimental
observations reporting negative line tensions.

This paper is organized as follows. Section II is devoted
to the generalized Young equation: for positive line tension,
either two or no equilibria exist; for negative line tension,
only one equilibrium exists. Section III concerns the stability
of these equilibria. After a technical premise, where the sta-
bility criterion we employ is recalled and applied to the prob-
lem at hand, we organize our results into two distinct sub-
sections: one for each sign of line tension. We compute the
index of residual stability for a set of experimental data in-
dicating the observation of negative line tensions �14�. Fi-

nally, a closing section summarizes the contents of the paper
and indicates the prospects for future work. To ease the pre-
sentation, the mathematical details of the modal analysis are
explained in seven short appendixes.

II. EQUILIBRIA

Here we find the equilibrium configurations of a droplet B
lying on a rigid, flat substrate. We assume that the droplet
consists of an incompressible fluid, so that it has a constant
volume V. The boundary �B of B can be split as �B
=S�S*, where the free surface S is in contact with the en-
vironment fluid, while the adhering surface S* is in contact
with the substrate. The surfaces S and S* meet along the
contact line C, where three different phases coexist. The
equilibrium configurations of the droplet B solve the Euler
equation for the free-energy functional F defined by

F�B� ª ��
S

da + �� − w��
S*

da + ��
C

ds , �1�

where � is the surface tension associated with the interface S
between the droplet and surrounding fluid, w is the adhesion
potential, which characterizes the affinity between the drop-
let and substrate, and � is the line tension introduced to ac-
count for the excess free energy concentrated along the con-
tact line C. In Eq. �1�, a denotes the area measure and s is the
arclength. At variance with � and w, which are both positive,
the line tension � can be either positive or negative: the very
objective of this paper is to study how the sign of � affects
the stability of the equilibria of B.

In taking Eq. �1� as the free energy of the droplet B, we
are making several assumptions. We neglect body forces like
gravity, and since w is constant, we also assume that the
substrate is chemically homogeneous. We also assume that
the line tension does not depend on the geometry of the
contact line. While dropping any of these hypotheses has no
effect on the validity of the methods we employ, assuming
them contribute to simplify computations significantly.

The Euler equation associated with Eq. �1� has been de-
rived countless times �10�: it requires the free surface S to
have constant mean curvature. Since the contact line is not
fixed, the following natural boundary condition, which gen-
eralizes the classical Young equation, holds along C:

� cos �c + � − w − ��g
* = 0. �2�

Here �c is the contact angle—that is, the angle between the
droplet’s and substrate’s conormal unit vectors at the contact
line C �see Fig. 1�—and �g

* is the geodesic curvature of C,
thought of as a curve on the substrate S*. The reader should
heed that in �7� the contact angle was chosen as �-�c.

Among surfaces S with constant mean curvature, we fo-
cus our attention on spherical caps of radius R. As a further
simplification, we assume that the substrate is flat, whence it
follows that the contact line C is a circle with radius R sin �c
and with geodesic curvature on S* �see, e.g., p. 249 of �15��:
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�g
* = −

1

R sin �c
.

Finally, the volume V of the droplet B depends only on R and
�c:

V =
�R3

3
�2 + �cos �c�3 − 3 cos �c� . �3�

The dependence of �g
* on R and �c, which are further related

through Eq. �3�, makes it nontrivial resolving Eq. �2�.
For future use, it is expedient to recast Eq. �2� in a

dimensionless form. To this end, we note that for �w−�� /
�� �−1,1� it is possible to define the bare contact angle �c

0

as

cos �c
0
ª

w − �

�
. �4�

Hence, �c
0 represents the contact angle at equilibrium, in the

absence of line tension. The line tension � introduces a typi-
cal length scale ���, where

� ª
�

�
. �5�

The ratio between � and the typical size of the droplet plays
a major role in our analysis. The dimensionless ratios

� ª

�

R
�6�

and

�* ª
�

�3 3V/�
�7�

will be used repeatedly in the sequel. For ease of the reader,
we note that �* is noting but the dimensionless line tension �̄
introduced by Widom in �7�. It should be noted that �, �, and
�* have the same sign as the line tension �. By using Eqs.
�4�–�7� we rephrase Eqs. �2� and �3� as

� = sin �c�cos �c
0 − cos �c� ¬ �1��c,�c

0� , �8a�

� = �*
�3 2 + �cos �c�3 − 3 cos �c ¬ �2��c,�*� , �8b�

provided that �c� �0,��. Excluding �c=0 and �c=� means
that we are in a partial wetting regime, away from both the
wetting transition ��c=0� and the drying transition ��c=��.

The function �1��c ,�c
0� depends continuously on the bare

contact angle �c
0, and �2��c ,�*� depends continuously on �*.

When �c
0 ranges in �0,��, the curves �1��c ,�c

0� span the
shaded region A in Fig. 2, with the upper curve correspond-
ing to �c

0=0 and the lower curve to �c
0=�. We also note that

the slope of �1��c ,�c
0� at �c=0 is nonpositive, being zero

only if �c
0=0. The graphs of all functions in the family

�2��c ,�*� pass through the origin of the ��c ,�� plane and
satisfy lim�c→0 �2���c ,�*�=0, where a prime stands for dif-
ferentiation with respect to �c. If �*�0, the functions
�2��c ,�*� are monotonically increasing in �c, while they are
monotonically decreasing in �c if �*	0. Whenever the
graph of a function �2��c ,�*� lies inside A, there is at least
one value of �c

0 that solves Eqs. �8�. Conversely, for every

point P in A, there is at least a pair ��̄c
0 ,�*� such that the

graphs of �1��c , �̄c
0� and �2��c ,�*� intersect at P and Eqs. �8�

are solved.
The pair �c=0, �=0 always solves Eqs. �8�, but this is a

spurious solution arising from the way Eq. �8a� was obtained
from Eq. �2�. When �*�0 and the bare contact angle has a
prescribed value �c

0, two solutions of Eq. �8a� exist as long
as �* ranges in the interval �0,�*c��c

0��, where �*c��c
0� is

determined by the condition that �1���c ,�c
0�=�2�(�c ,�*c��c

0�)
for �c solving Eqs. �8�. If �*��*c��c

0�, Eqs. �8� have no
solution, and so no equilibrium exists. This shows that even
in a simple geometry, adding the line tension makes the
modified Young equation nontrivial. When �*	0, a single
solution of Eqs. �8� exists for any prescribed value of �c

0, as
can easily be proved by noting that �1�0,�c

0�=�1�� ,�c
0�=0

and �1��0,�c
0�	0, whereas the function �2��c ,�*�, which is

monotonically decreasing in �c, obeys the limits
lim�c→0 �2��c ,�*�=0 and lim�c→0 �2���c ,�*�=0.

Figure 2 shows the possible scenarios outlined here, for a
prescribed value of �c

0.
We finally obtain from Eq. �8a� that the equilibrium con-

tact angle �c is larger than the bare contact angle �c
0 when

the line tension is positive, whereas it is smaller than �c
0

when the line tension is negative. We also heed that, by Eq.

FIG. 1. Cross section of a spherical droplet with radius R lying
on a flat, homogeneous substrate. The angle � denotes the colati-
tude on the droplet’s surface, and �c is the contact angle—that is,
the angle between the droplet’s and substrate’s conormals.

FIG. 2. Graphical solution of system �8�, for a given value of
�c

0. The admissible region A �in gray� has been plotted together
with the curve �1��c ,�c

0� and several curves in the family
�2��c ,�*�. When �*� �0,�*c��c

0�) �e.g., the curve �*=�*1�, two ac-
ceptable equilibria exist, while no equilibrium exists for �*

��*c��c
0� �e.g., the curve �*=�*2�. At �*=�*c��c

0� the two equilibria
coalesce into a single equilibrium solution. When �* is negative
�e.g., the curve �*=�*0�, only one equilibrium exists. In A, � ranges
within the interval �−1.3,1.3�.
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�8b�, in the limit where the line tension is negative and di-
vergent and so �*→−
, the equilibrium contact angle mi-
grates towards 0. In the next section we will study the effects
of line tension on the stability of the equilibrium solutions
described here.

III. STABILITY

To obtain the Euler equation and the generalized Young’s
equation �2� governing the equilibrium shape of the droplet
B we computed the first variation �F of the functional F by
perturbing the points p on B as follows �10�:

p � p� ª p + �u , �9�

and then requiring

�F�u� ª 	 dF�u�
d�

	
�=0

= 0.

To assess the local stability of an equilibrium configuration,
the sign of the second variation

�2F ª 	 d2F�u�
d�2 	

�=0

needs also to be evaluated. In �10� we proved that, in general,
the perturbation �9� does not keep the constraints imposed on
the problem up to second order in �. In particular, we pointed
out that, to account properly for the gliding of a droplet on an
arbitrarily curved substrate, a point p in B must be mapped
onto

p� ª p + �u + �2v , �10�

with the fields u and v constrained to obey

u · �* = 0 and v · �* = −
1

2
u · ��s�*�u on S*, �11�

where �* is the outer unit normal vector to the substrate and
�s�* is its surface gradient. While the field v does not affect
the first variation, it does affect the second variation: in par-
ticular, the use of �11�2 together with the equilibrium equa-
tions makes it possible to write the second variation as a
quadratic functional depending only upon the component u
ªu ·� of the field u along the outer unit normal vector � to
the free surface S.

As usual, once the second variation �2F is known, the
local stability of an equilibrium configuration is guaranteed
by minimizing it on the set

�
S

u2da = 1 �12�

and by requiring its minimum to be positive. Besides the
constraint �12�, the perturbation u must preserve the volume
of the droplet and so it must also obey the requirement

�
S

uda = 0. �13�

The integral constraints �12� and �13� are accounted for by
introducing suitable multipliers − 1

2 and �, and then finding
the minimum of

F�u� ª
1

2
�

S

��su�2 + �u2�da + ��

S
uda −

1

2
�

S
u2da

+
1

2
�

C

�us��

2 − �us�
2 �ds , �14�

where a prime now stands for differentiation with respect to
the arclength s along C. In Eq. �14�,

� ª 2K − H2, �15�

where H and K are the total and Gaussian curvatures of S,
and us* is related to u through

us� =
u

sin �c
.

Finally,

�� ª ��K* + �g
*2� + ��H* sin �c + H cos �c sin �c

+ �g�sin �c�2� , �16�

where H* and K* are the total and Gaussian curvatures of S*,
and �g and �g

* are the geodesic curvatures of the contact line
C, regarded as a curve on S and S*, respectively. The defi-
nitions �15� and �16� are indeed special cases of the general
definitions given in �10�, where the effects of inhomogene-
ities in the chemical composition of the substrate, noncon-
stant line tension, and geometric microstructures were also
taken into account.

For a spherical cap S of radius R lying on a flat substrate,
H=2/R, K=1/R2, H*=0, and K*=0; moreover, along the
circular contact line C, �g=−cot �c /R and �g

*=−1/R sin �c.
By the same analysis as in �10�, the equilibrium equations for
F�u� read as

�su + � +
2

R2u = � on S �17�

and

	� �u

��
−

�

�sin �c�4

�2u

��2 −
1

�sin �c�2� �

�sin �c�2

+ sin �c cos �cu�	
�=�c

= 0 along C , �18�

where the differential operator

�s ª
1

R2

�2

��2 +
1

R2 cot �
�

��
+

1

�R sin ��2

�2

��2 �19�

is the surface Laplacian on the sphere, expressed in terms of
the colatitude �� �0,�c� and the azimuth �� �0,2�� �see
Fig. 1�. The minimum eigenvalue min of Eqs. �17� and �18�
coincides with the minimum value of �2F on the set �12�: a

GUZZARDI, ROSSO, AND VIRGA PHYSICAL REVIEW E 73, 021602 �2006�

021602-4



configuration is unstable if min is negative and locally stable
if min is positive.

To find min or, at least, to determine its sign, it is expe-
dient to expand the solution ū of the homogenous problem

�sū + � + 2�ū = 0 on S �20�

as

ū = �
m=0




amum���trig�m�� , �21�

where

trig�m�� ª �sin�m�� or cos�m�� if m � 0,

1 if m = 0,
�

and am�R are the coefficients of the expansion. In Eq. �20�,
the factor R−2 in front of �s in Eq. �19� has been dropped by
rescaling  to R2. We insert the expansion �21� into Eq. �20�
and conclude that, for every value of m, the function um���
solves the equation

1

sin �

d

d�
�sin �

dum

d�
� + � + 2 − � m

sin �
2�um = 0.

�22�

The solution of Eq. �22� that is bounded everywhere on S is
the associated Legendre function of the first kind P�

m�cos ��,
where the index � is related to  by

��� + 1� =  + 2. �23�

Equation �22� can also be solved for complex values of �.
Since the product ���+1� is invariant under the transforma-
tion ��−�1+��, we can restrict our attention to the values
of � with real part Re����− 1

2 . Moreover, since the product
���+1� is left unchanged when the imaginary part Im��� of �
is changed into its opposite, we can also assume Im����0.
Equation �22� needs to be solved only when  is real—that
is, for either

Im��� = 0 or Re��� = −
1

2
.

Collecting all this information, we conclude that the pa-
rameter � ranges in the set I of the complex � plane shown
in Fig. 3, formally defined as

I ª �� � �−
1

2
+ i0,−

1

2
+ i
 � �−

1

2
, + 
� .

By Eq. �23�, instability occurs for Re���	1—that is, for

� � U ª ��−
1

2
+ i0,−

1

2
+ i
 � �−

1

2
,1� . �24�

The associated Legendre functions P�
m�cos �� are also called

spherical functions when � is real and conical functions
when �=− 1

2 + i�, with ��0. Unstable modes with a real �
will be referred to as the spherical modes; unstable modes
with complex � will be referred to as the conical modes.

The solution u of Eq. �17� with � rescaled to R2 differs
from ū by a constant c related to the multipliers � and 
through

� + 2�c = ��� + 1�c = � , �25�

provided that �−2 or, equivalently, ��0. In general, the
function u must also satisfy the incompressibility constraint
�13�, which now reads as

�
0

�c �
0

2�

u��,��sin �d�d� = 0. �26�

In a modal analysis, where conditions are sought that make a
specific mode unstable, the constraint �26� is adjusted mode
by mode, by adding to the function

um��,�� ª P�
m�cos ��trig�m��, m � N , �27�

a constant c��c ,� ,m� that makes Eq. �26� satisfied so that �,
now depending on �c, �, and m, follows from Eq. �25� for all
� but �=0, a case which will be recovered below as a limit-
ing case. �An independent study of the case m=0, �=0 is
presented for completeness in Appendix A.�

The factor trig�m�� guarantees that um�� ,�� automati-
cally obeys Eq. �26� when m�0, and so both c��c ,� ,m� and
the corresponding value of � vanish for all m�0. When m
=0, to determine c we proceed as follows. First, we heed that
�see Eq. �7.8.3� of �16��

P�+1� �x� − xP���x� = �� + 1�P��x� , �28�

where the superscript 0 in the Legendre functions is omitted
for brevity and a prime stands for differentiation with respect
to the argument. Second, since

�
0

�c �
0

2�

P��cos ��sin �d�d� = 2��
xc

1

P��x�dx ,

where xcªcos �c, by integrating in Eq. �28� by parts and
recalling that P��1�=1 for all values of �, we obtain

FIG. 3. Complex values of � relevant to our analysis. The real
and imaginary axes of the complex � plane are dashed lines; the set
I is the solid line, whose thicker part represents the subset U cor-
responding to negative values of the multiplier  and, hence, to
unstable equilibria.
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�
0

�c �
0

2�

P��cos ��sin �d�d�

=
cos �cP��cos �c� − P�+1�cos �c�

�
if � � 0.

Hence, for each integer m we replace u in Eqs. �17� and �26�
with um�� ,��+c��c ,� ,m�, where the constant c��c ,� ,m� is
given by

c��c,�,m�

ª �0 if m � 0,

−
cos �cP��cos �c� − P�+1�cos �c�

�1 − cos �c��
if m = 0, �

�29�

and then we solve Eq. �18� in terms of �, which in turn
becomes a function ��

m��c� of the contact angle �c, param-
etrized in � and m. A straightforward substitution yields

��
m��c� = − �sin �c�4

�cot �cP�
m�cos �c� − 	 �P�

m�cos ��
��

	
�c


�1 − m2�P�

m�cos �c�
if m � 0,1, �30a�

��
m��c� = − �sin �c�4

�cot �c�P��cos �c� + c��c,�,0�� − 	 �P��cos ��
��

	
�c


c��c,�,0� + P��cos �c�

if m = 0. �30b�

Modes with m=1 are excluded in Eqs. �30� because, as
shown in Appendix B, they satisfy the boundary condition
�18� only for �=1. Thus, these modes are marginally stable,
as =0. This should not come as a surprise, since the func-
tion P1

1�cos ��trig�=sin �trig� is proportional to the projec-
tion along the droplet’s normal of a uniform translation along
the flat substrate. Hence, the marginal modes m=1 simply
reflect the invariance under translations of the free-energy
functional, already noted by Sekimoto, Oguma, and Ka-
wasaky �13�.

By plotting the graphs of the functions ��
m��c�, we can

decide whether the equilibrium configurations found in Sec.
II are locally stable or not, with respect to specific modes.
The points of the admissible region A that also belong to the
graph of a function ��

m��c� with Re �	1 correspond to un-
stable equilibria of the droplet.

So far, our modal analysis is independent of the sign of
the line tension. Since different outcomes are expected for

different signs, we split our study into two parts, starting
from the case where the line tension is negative.

A. Negative line tension

When the line tension is negative, the droplet is expected
to be unstable against modes that increase sufficiently the
length of its contact line. Our development below will indeed
make this expectation quantitative. This, however, does not
mean that all modes are unstable. Actually, it is shown in
Appendix B that every configuration ��c ,�� is stable against
the mode m=0 for an appropriate ��1. The mode m=0 will
hereafter be disregarded since, as shown in the next subsec-
tion, it becomes unstable only for positive line tensions.
Moreover, we already know that the modes m=1 correspond
to rigid translations. Our analysis will thus concern only the
functions ��

m��c� for m�2.
Equation �30a� can be recast as �see Eq. �C1� in Appendix

C�

��
m��c� =

��m + ��P−1+�
m �cos �c� − �� − 1�cos �cP�

m�cos �c��sin3 �c

�m2 − 1�P�
m�cos �c�

. �31�

For a fixed value of m, we select two arbitrary real values of
�—say, �1 and �2��1, with �1 and �2 different from 0 and
1—and we draw the graphs of the functions ��1

m ��c� and
��2

m ��c�: the cases �=0 and �=1 need to be momentarily

excluded, since the associated Legendre function P�
m�cos �c�

is identically zero when � is an integer less than m, and so
Eq. �31� makes no sense. Since the function ��

m��c� depends
continuously on �, each point of the ��c ,�� plane between
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the graphs of ��1

m ��c� and ��2

m ��c� also belongs to the graph of
a function ��

m��c� for some �� ��1 ,�2�. By repeating this
argument when m is varied and letting � span the whole set
U defined in Eq. �24�, we find all pairs ��c ,�� that corre-
spond to unstable equilibria, including both spherical and
conical modes. The graph of ��

m��c� approaches limiting
curves when � tends either to 0 or 1, though the correspond-
ing limiting modes um fail to be in L2�S�—that is, square
summable on S. By appropriately truncating these functions,
it is possible to construct minimizing sequences in L2�S� on
which �2F converges to −2 and 0, which, by Eq. �25�, are the
values of  corresponding to �=0 and �=1, respectively. In
the former case, we can conclude that the curves �0

m��c� are
unstable, since �2F attains negative values arbitrarily close
to −2 on the minimizing sequence. In the latter case, we
conclude that the curves �1

m��c� are marginal, since �2F re-
mains positive on the minimizing sequence, though arbi-
trarily close to 0. In short, we find that for a given value of m
the region below the marginal curve �1

m��c� is covered by the
curves ��

m��c� with ��U. In more detail, the curves ��
m��c�

corresponding to spherical modes ���− 1
2 ,1� lie above the

curves �−�1/2�+i�
m ��c� corresponding to conical modes: pre-

cisely, in Appendix D, we prove that all the points in the
��c ,�� plane below the curve �−1/2

m ��c� also belong to a curve
�−�1/2�+i�

m ��c� for some ��0. The continuous dependence of
the functions ��

m��c� on � and the limit �D1� ensure that, for
any prescribed value of m, the manifold 
��c ,�� ��c

� �0,�� ,�	�1
m��c�� is unstable against the m-indexed

modes. Since min=0 along the curves �1
m��c�, their intersec-

tions with A are marginal curves: they delimit the regions in
A that are unstable against the m-indexed modes. It is proved
in Appendix E that the marginal curves �1

m converge to the �c
axis as m increases. Strictly speaking, only the unstable pairs
��c ,�� within the admissible set A matter, as they corre-
spond to attainable equilibria. However, near the origin A is
covered by the graphs of �−�1/2�+i�

m ��c�, with ��1. This ex-
plains why we look first for the unstable pairs ��c ,�� with
negative � and then we restrict the unstable manifold to A.
The interplay of spherical and conical modes in weaving the
whole unstable manifold is illuminated in Ref. �17�.

Figure 4 summarizes the stability analysis. Here, the mar-
ginal curves corresponding to several values of m have been
plotted together with the admissible region A. Whenever a
pair ��c ,�� falls within the region Us below the lowermost
marginal curve �1

2��c�, the droplet is unstable. In the region
Rs above the curve �1

2��c�, equilibria are conditionally
stable: for a given equilibrium configuration of the droplet,
the smallest value mrs of m for which the corresponding
modes are unstable is an index of stability of the equilibrium
configuration, a stability that we call residual as it results
from the suppression of all unstable modes m�mrs. For a
given point p in Rs, the marginal curves with m�mrs lie
below p, while those with m�mrs lie above it. For mrs=2,
the droplet is simply unstable. In Fig. 5 three different graphs
of mrs are plotted in terms of the dimensionless line tension
�* for some values of the bare contact angle �c

0. All these
graphs are necessarily discontinuous, and mrs increases as �*
approaches zero.

When the line tension is negative, the functional F in Eq.
�1� is unbounded from below. No equilibrium configuration
of F can be stable when m is large enough, because the
perturbing modes make the contact line more and more
wrinkled. Intuitively, upon increasing m, the typical length
�m over which corrugations associated with the m-indexed
modes manifest themselves decreases. When �m becomes
smaller than the microscopic length �mic, the corresponding
modes are inconsistent with our analysis, as they induce de-
formations of the droplets at length scales that lie beyond the

FIG. 4. Stability analysis for negative line tension. The dotted
curve delimits the admissible region A in Fig. 2. The solid line is
the marginal curve �1

2��c�, along which the minimum value of � is
��−0.52. In the region Us below �1

2��c�, equilibria are unstable
regardless of the magnitude of the line tension. In the region Rs
above �1

2��c�, equilibria are residually stable. The dashed curves in
Rs are marginal curves corresponding to m=3,4 ,5 ,6, ordered up-
wards. For every point p in Rs, there exists a value mrs of m such
that all marginal curves with m�mrs lie below p, while those with
m�mrs lie above it. Consequently, p represents an equilibrium
stable against modes with m�mrs and unstable against modes with
m�mrs. In the limit where m→
, the marginal curves tend towards
the �c axis.
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range of validity of the continuum model. Bounding �m from
below, so as to ensure consistency to the model, is the same
as bounding the index m of the allowed modes from above.

A formal definition of the typical length �m associated
with the marginal mode

um
* ��,�� ª P1

m�cos ��trig�m�� �32�

can be given as follows. Equation �32�, which is for the
marginal mode the same as Eq. �27� for the generic mode,
describes a system of alternating bumps and dips on the
spherical cap S with radius R representing the unperturbed
equilibrium configuration of the droplet. The nodal set of
um

* —that is, the set where um
* vanishes—is a network of par-

allels and meridians that delimit a tessellation of S. The two
shortest lengths associated with such a network are exhibited
by the 2m spherical triangles that have a vertex in the pole of
S where �=0. These triangles are isosceles with base

�m ª

�R sin �0
m

m
�33�

and oblique side

sm ª R�0
m,

where �0
m is either the smallest positive root of P1

m�cos �� in
�0,�c�, when it exists, or �c, when the smallest positive root
of P1

m�cos �� lies outside �0,�c�. For m sufficiently large,
�m	sm and Eq. �33� defines the shortest length associated
with the marginal mode um

* .
To enforce our stability criterion the length �rs that corre-

sponds through Eq. �33� to the index mrs must be compared
with �mic. If �rs��mic, the drop is unstable because there are
unstable modes compatible with the continuum model. If
�rs	�mic, the drop is stable because all modes compatible
with the continuum model are stable.

For R=1 m, Widom �7� gave the estimate ��*��0.063,
based on experimentally reasonable values of surface and

line tensions. It is clear from Fig. 5 that when �*�−0.063
the index of residual stability is larger than 6 for all values of
�c

0 plotted there. Taking, for example, mrs=10, we obtain
�rs�0.1 m, which is larger than �mic, and so we conclude
that this hypothetical drop would be unstable.

Figure 5 only conveys partial information, as each stair-
case is plotted for a fixed value of �c

0. To learn how mrs
depends on the constitutive parameters �c

0 and �* of the
model, we need to interpret in terms of these the stability
analysis performed in the ��c ,�� plane, where it was easier
to solve Eqs. �17� and �18�. This is achieved by finding a
mapping

v:��c,�� � �cos �c
0,�*�

that maps solutions of Eqs. �8� into the �cos �c
0 ,�*� plane. We

shall also refer to v as to the reverse mapping. To find the
reverse mapping we solve Eqs. �8� with respect to cos �c

0 and
�*, obtaining

cos �c
0��c,�� =

�

sin �c
+ cos �c, �34a�

�*��c,�� =
�3 2 + �cos �c�3 − 3 cos �c

�
. �34b�

Then, the image of the function ��
m��c� is the parametric

curve

v���
m��c�� = �cos �c

0
„�c,��

m��c�…,�*„�c,��
m��c�…�

obtained from Eqs. �34�.
For a negative line tension, the reverse mapping is a one-

to-one function as for a given pair �cos �c
0 ,�� there is a

unique pair ��c ,�� that solves Eqs. �8�. For a positive line
tension, the reverse mapping is a one-to-two function, whose
branches give the bifurcation diagram we discuss in the next
subsection. Figure 6 shows the curves that link �c

0 and �* for
a given index mrs of residual stability to be achieved. The
values of mrs considered here range from 2 to 100. For given
�c

0 and �*, the index of residual stability associated with
them can easily be estimated by identifying the curves in Fig.
6 that pass close to the point �cos �c

0 ,−log10��*��. All the
curves in Fig. 6 were obtained as reverse mappings of the
curves �1

mrs��c�.
To show how the graphs in Fig. 6 can be employed in

practice, we compute the value of �* from data obtained in
�14� for the line tension of an octane droplet, close to the
wetting transition. Using the values �c

0=9.5° and �=−4.4
�10−10 N, measured at the temperature of 28 °C, and taking
1.4�10−5 m as a typical value of �33V /�, obtained for oc-
tane from Fig. 4 of �14�, we find �*=−0.13�10−2. This and
the other values of �* obtained from the negative values of �
reported in Table 1 of �14�, for droplets on the same substrate
at different temperatures, are displayed in Fig. 7.

Most of the experimental data are across the line with
index of residual stability mrs=50. Thus, according to the
theory presented here, for the droplets observed in �14� the
index of residual stability is considerably higher than for the
droplet envisaged by Widom �7�. The fact suggested in Fig. 7

FIG. 5. The index mrs of residual stability against the dimen-
sionless line tension �*, when the bare contact angle �c

0 is � /4
�dashed line�, � /2, or 3� /4 �thick line�. Two features are worth
noting. First, when the magnitude of the �negative� line tension is
large enough, mrs=2, meaning that all modes are unstable. Second,
on approaching �*=0, mrs diverges, implying that the range of re-
sidual stability increases.
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that droplets with different bare contact angles �c
0 have index

of residual stability mrs close to 50 may well be accidental,
and different lengths �rs may indeed correspond to similar
indices mrs when �c

0 changes. For illustrative purposes, we
pick the data shown in Fig. 4 of �14� and compute the cor-
responding �rs for m=50: taking R sin �c�35 m and �c
�5°, we obtain �rs�40 nm, which we reckon to be less than
�mic. Thus, the droplets observed by Wang, Betelu, and Law
�14� are stable according to our criterion and their measures
of negative line tensions appear to be highly reliable.

B. Positive line tension

We proved in the preceding subsection that all modes m
�2 make the droplet unstable only when the line tension,

and so �, is negative, as the graphs of the curves ��
m��c� lie in

the negative quadrant 
��c ,�� ��c� �0,�� ,�	0�. Moreover,
modes with m=1 and �=1 are associated with rigid transla-
tions of the droplet for all values of the line tension. Hence,
when the line tension is positive, only the modes with m
=0, which are stable for negative line tensions, can become
unstable, and indeed they do, as we now proceed to show.

The modes m=0 are described by the functions ��
0��c�

defined in Eq. �30b�, with c��c ,� ,0� given by �29�2. By rea-
soning as in Sec. III A, we conclude that the set of the ��c ,��
plane bounded by the graphs of �1

0��c� and �−1/2
0 ��c� corre-

sponds to unstable equilibria, with �1
0��c� playing the role of

marginal curve. It is proved in Appendix F that the set of the
��c ,�� plane above the graph of �−1/2

0 ��c� contains the graph
of �−�1/2�+i�

0 ��c�, for some positive value of �. Finally, by the
same arguments in Sec. III A, we conclude that the set below
the graph of �1

0��c� corresponds to locally stable equilibria,
since there the minimum value of  is positive. Hence, when
the line tension is positive, the curve �1

0��c� is a marginal
curve.

As already shown in Sec. II for a given value �c
0 of the

bare contact angle, there is a critical value �*c��c
0� of �* such

that, if �*� �0,�*c��c
0�), there are two equilibria, and if �*

��*c��c
0�, there is none.

Figure 8 shows the graph of the marginal curve superim-
posed to the admissible set A: only the subset of A below
the curve �1

0��c� contains stable equilibria: for given values
of �c

0 and �*, when two equilibria exist, only the one with the
lowest value of �c is stable. We also note that the two equi-
libria coalesce along the marginal curve �1

0��c�.
The modes that mark the transition from stable to unstable

equilibria have normal component u proportional to cos �
+c. Hence, Eq. �10� maps spheres onto spheres, as it should
since the stability threshold found here agrees with Widom’s
�7�, though perturbations preserving the spherical shape of
the droplet were not the only ones considered in our analysis.

FIG. 6. Curves corresponding to different values of the index
mrs of residual stability. From the lower to the upper curve, mrs

=2 ,5 ,10,20,30,40,50,70,100. The vertical axis reports −log10

���*�, so that going upwards the line tension passes from higher,
negative values to smaller, negative values. The curve m=2 marks
the onset of residual stability: below it, no stable mode exists at all.

FIG. 7. The experimental data obtained in �14� are plotted
against the curves with constant index of residual stability illus-
trated in Fig. 6. The experimental points are represented by crosses
and mrs=2 ,5 ,10,20,30,40,50,70,100, from the lower to the upper
curve. Most experimental points fall across the curve with mrs=50.

FIG. 8. The marginal curve �1
0��c� divides the admissible set A

into two parts. Only the part below the graph of �1
0��c� is stable.

The thin lines are graphs of the functions �1��c ,�c
0� and

�2(�c ,�*c��c
0�) defined in Eqs. �8�, for several values of �c

0. When
�*=�*c��c

0�, the two equilibria coalesce into one another and so
�1��c ,�c

0� and �2(�c ,�*c��c
0�) have a common tangent. Here we see

that the marginal curve �1
0��c� passes through all these tangent

points.
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It is remarkable that the restricted stability analysis of Wi-
dom �7� delivers the correct result, at least for positive line
tensions. Figure 9 contains the essential results of our stabil-
ity analysis for positive line tension: a bifurcation diagram is
illustrated for a given value of the bare contact angle �c

0.
For positive values of �*, the local stability of a droplet is

completely determined by the preceding analysis. To explore
the global stability, we compare as in �7� the energy of a
sessile droplet with that of a completely detached sphere and
that of a completely wetted substrate. By setting

x0 ª cos �c
0 and x ª cos �c

and using the definition of �* as in Eq. �7�, as well as the
volume constraint �3�, we can recast the modified Young’s
equation �2� in the form

�* = �x0 − x��2 + x�−1/3�1 − x�−1/6�1 + x�1/2, �35�

which coincides with Eq. �12� of �7�, provided that x and x0
are changed to their opposite to accommodate the different
definitions of the contact angle. By inserting Eq. �35� into the
dimensionless free energy

F ª

F

2���3V

�
2/3 ,

for a sessile droplet, we obtain

Fs�x� = �1 − x�−1/3�2 + x�−2/3�1 + �1 + x�� x0

2
− x� .

To find the locus in the ��c ,�*� plane where Fs coincides
with the free energy of a completely detached sphere, we
need to solve the equation �cf. Eq. �16� of �7��

�1 − x�−1/3�2 + x�−2/3�1 + �1 + x�� x0

2
− x� = 2−1/3,

�36�

where the right-hand side is the dimensionless free energy of
a detached sphere of fixed volume V. Equations �35� and �36�
determine the locus in the ��c ,�*� plane where a first-order
drying transition occurs: its analytic expression readily fol-
lows by inserting into Eq. �35� the value of x0 obtained from
Eq. �36�. It is shown as a dotted curve in Fig. 9.

The limiting value Fw of the dimensionless free energy of
a droplet that completely wets the substrate is +
 for
cos �c

0	1 and any line tension. Still Fw= +
 for cos �c
0=1

and a positive line tension: this shows that a positive line
tension never promotes complete wetting. On the contrary,
Fw=−
 for cos �c

0=1 and a negative line tension: this shows
that complete wetting is enhanced by negative line tension,
provided that it would already happen in the absence of line
tension.

IV. CONCLUSIONS

We performed a stability analysis of the equilibria of a
sessile droplet lying upon a rigid, flat, and homogeneous
substrate in the presence of line tension. As expected, we
obtained different outcomes depending on the sign of the line
tension. While our analysis strengthens Widom’s results �7�
when the line tension is positive, qualitatively new results
occur when the line tension is negative. In accordance with
the mathematical properties of the free-energy functional, no
equilibrium can definitely be stable for negative line ten-
sions. Although mathematically unquestionable, this conclu-
sion could be misleading since the modes inducing instabil-
ity may be effective at a length scale incompatible with the
model. Enforcing a selection of the class of admissible per-
turbations makes negative values of the line tension compat-
ible with the existence of stable equilibria, at least if the
absolute value of the line tension is not too high, as shown in
�11�.

We made these qualitative arguments precise by introduc-
ing the notion of residual stability, quantitatively measured
by an integer mrs. The higher is mrs, the more are the stable
modes of a sessile droplet with negative line tension. A typi-
cal length �rs was also associated with mrs, which measures
the shortest length scale at which the mode with index mrs
deforms the unperturbed equilibrium configuration of the
droplet. According to our criterion, the droplet is stable
whenever �rs is smaller than a microscopic length �mic char-
acteristic of the fluid and unstable otherwise. This criterion
was indeed applied to the experimental data published in
�14�: for one droplet we checked that �rs��mic, and so we
concluded that the negative line tension measured there is far
more reliable than the ideal value estimated in �7�, for which
�rs��mic.

The unstable modes singled out by our analysis are static,
as they are virtual perturbations. The way in which these
modes drive the system out of equilibrium and their role in
dynamics are questions left untouched by our treatment, as
they would require a dynamic instability analysis. However,

FIG. 9. Bifurcation diagram showing the stability of equilibria
in terms of the dimensionless line tension �*, when the bare contact
angle �c

0 is � /3. Solutions are parametrized by their contact angle
�c. Dashed lines correspond to unstable equilibria. Solid lines cor-
respond to stable equilibria: both locally stable �thin line� and glo-
bally stable �thick line�. The dotted line marks the first-order drying
transition.
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as shown in Appendix G, the mean curvature of the droplet’s
free surface perturbed by marginal modes is still constant up
to first order in the perturbation parameter � in Eq. �9�.
Hence, to the same degree of approximation, the perturbed
shape represents an admissible equilibrium shape. This sug-
gests that marginal modes dictate the shape of the droplet in
the early stages of its evolution away from an unstable equi-
librium configuration. For illustrative purposes only, in Fig.
10 we show a spherical cap perturbed by a marginal mode
with mrs=10.

This paper calls for an extension to the case where the
effects of line tension are coupled with the curvature of the
substrate. This study is indeed currently pursued and will be
published elsewhere �19�.
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APPENDIX A: MODES WITH �=0

As noted in Sec. III, the case �=0 is rather peculiar since
the constant c in Eq. �25� remains undetermined. Here, we
determine directly solutions to Eq. �17� that are rotationally
invariant—that is, with m=0. For �=0 the scaled multiplier
=−2. A solution u=u��� of Eq. �17� must satisfy

u� + cot �u� = � , �A1�

where a prime stands for differentiation with respect to �,
and � has been rescaled to R2. We look for solutions that are
bounded at �=0. Equation �A1�, can be recast as

�u� sin ��� = − �� cos ���,

which, once integrated, yields

u� =
c1 − � cos �

sin �
,

where c1 is an integration constant. Integrating this equation
again, we arrive at

u��� = c1 ln tan
�

2
− � ln sin � + c2.

This function is bounded at �=0, provided that c1=�; after
some rearrangements, we then arrive at

u��� = c2 − � ln�1 + cos �� .

By imposing the incompressibility constraint �26�,

�
0

�c

u���sin �d� = 0,

we finally obtain

c2 = − �
�1 − cos �c� + �1 + cos �c�ln�1 + cos �c�

1 − cos �c

and � can be determined by renormalizing the L2 norm of u
on S.

APPENDIX B: STABLE MODES WITH m=0

To show that any pair ��c ,�� with negative � is stable for
the mode m=0 we prove that it can be attained by the graph
of a function ��

0��c�, for ��1. To this aim, it is expedient to
study the roots in �c of

f��,�c� ª ��1 − cos �c�P��cos �c� + P�+1�cos �c�

− cos �cP��cos �c� , �B1�

where, by Eq. �30b�, ����c� could diverge. Let �̄c be the
smallest, nonvanishing root of Eq. �B1�. When � tends to a
natural number n, the function P��cos �c� tends to the Leg-
endre polynomial Pn�cos �c� in the set �−1+� ,1�, for a posi-
tive �, but it diverges logarithmically at cos �c=−1: in fact,
as a function of a complex variable, P��·� is analytic only in
the complex plane cut along �−
 ,−1�. As a consequence,
although f�1,���0, the first nontrivial root of f�� ,�c� be-
comes closer and closer to �, when � tends to 1—that is,

lim
�→1+

�̄c = � .

On increasing �, �̄c decreases and new roots of Eq. �B1�
appear at �c=�, whenever � approaches a natural number.
When ��1, the asymptotic formula �see Eq. �8.721.3� of
�18��

FIG. 10. �Color online� A spherical cap perturbed by a marginal
mode with mrs=10. The perturbed contact line exhibits a periodic
structure with ten fingers.

RESIDUAL STABILITY OF SESSILE DROPLETS WITH… PHYSICAL REVIEW E 73, 021602 �2006�

021602-11



P��cos �c� =
2

��

��� + 1�

��� +
3

2


cos��� +
1

2
�c − �/4�

�2 sin �c

��1 + O�1

�
� ,

where � is Euler’s function, Stirling’s formula �see Eq.
�1.4.25� of �16��

��x� � �2�xx−�1/2�e−x

and repeated use of the elementary limit

lim
n→+


�1 +
1

n
n

= e

lead us to conclude that

f��,�c� ��2�

�
�1 − cos �c�cos��� +

1

2
�c −

�

4
�,

for � � 1,

whence it follows that

lim
�→+


�̄c = 0.

Since

lim
�c→�̄c

±
����c� = ± 
 ,

we conclude that any point of the ��c ,�� plane but �� ,0�
belongs to the graph of some function ��

0��c�, at least for
sufficiently large values of �.

APPENDIX C: MODES WITH m=1

For m=1, the following identity holds for all � �see Eq.
�8.733.1� of �18��

�1 − x2�
dP�

1�x�
dx

= �� + 1�P�−1
1 �x� − �xP�

1. �C1�

Letting xªcos �, since dP�
1�cos �� /d�

=−sin � �dP�
1�x� /dx�, we can recast Eq. �18� as

1

sin �c
��1 + ��P�−1

1 �cos �c� + �1 − ��cos �cP�
1�cos �c�� = 0,

which is never satisfied when ��1 and is identically satis-
fied when �=1—that is, by Eq. �23�—when =0.

APPENDIX D: ASYMPTOTICS OF CONICAL FUNCTIONS

It is easily checked that, when ��0, the graphs of
�−�1/2�+i�

m ��c� always lie below that of �−1/2
m ��c�. Here we

prove that

lim
�→+


�−�1/2�+i�
m ��c� = − 
 . �D1�

When m=0, the conical function P−�1/2�+i� has the asymptotic
behavior �see p. 202 of �16��

P−�1/2�+i��cos �c� �
e��c

�2�� sin �c

�D2�

for �→ +
 and 0	���c��−�, with � a positive num-
ber. We see from Eq. �30a� that the asymptotic behavior of
�−�1/2�+i�

m ��c� when �→ +
 is determined by the ratio

1

P−�1/2�+i�
m 	 �P−�1/2�+i�

m �cos ��

��
	

�c

.

Now, by definition,

P�
m�cos �c� ª �− 1�m�1 − �cos �c�2�m/2�mP��cos �c�

��cos �c�m ,

�D3�

and differentiating both sides in Eq. �D2� with respect to �c,
by Eq. �D3� we show that the leading term in � of
P−�1/2�+i�

m �cos �c� is

P−�1/2�+i�
m �cos �c� �

��m−1/2�e��c

�2� sin �c

and, correspondingly,

	 �P−�1/2�+i�
m �cos ��

��
	

�c

�
��m+1/2�e��c

�2� sin �c

.

Thus Eq. �D1� follows for all integers m.

APPENDIX E: MODES WITH mš1

Here we study the behavior of the marginal curves �1
m��c�

as m increases. We first note that, by use of de l’Hôpital’s
rule in Eq. �31�,

�1
m��c� ª lim

�→1
��

m��c� = �sin �c�3

	 �P�
m

��
	

�=0

�m − 1�	 �P�
m

��
	

�=1

,

�E1�

where we also observed that ��P�−1
m /����=1= ��P�

m /����=0.
Strictly speaking, Eq. �E1� holds only away from �c=�,
where P�

m diverges. This divergence, however, does not con-
cern us here, since we only consider partial wetting. Since
�see Eqs. �8.762.1� and �8.762.3� of �18��

	 �P��cos �c�
��

	
�=0

= 2 ln cos
�c

2

and

	 �P�
−1�cos �c�

��
	

�=1
= −

1

2
tan

�c

2
�sin

�c

2
2

+ sin �c ln cos
�c

2
,

by use of the identity �see Eq. �8.752.2� of �18��
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P�
−1�cos �c� = −

����
��� + 2�

P�
1 =

P�
1

��� + 1�
,

we readily obtain that

	 �P�
1�cos �c�

��
	

�=1
= tan

�c

2
�sin

�c

2
2

− 2 sin �c ln cos
�c

2
.

Thus, by recalling definition �D3� and interchanging in the
order of differentiation, we see from Eq. �E1� that �1

m��c�
behaves like 1/m, when m�1, and so

lim
m→


�1
m��c� = 0.

APPENDIX F: UNSTABLE MODES WITH m=0

Here, we show that

lim
�→+


�−�1/2�+i�
0 ��c� = + 
 �F1�

and make use of the continuous dependence of ��
0��c� on � to

conclude that the graphs of �−�1/2�+i�
0 are all above the graph

of �−�1/2�
0 ��c�. A glance at Eq. �30b� suffices to conclude that

the leading term in � of �−�1/2�+i�
0 ��c� is

�−�1/2�+i�
0 ��c� � �sin �c�3

	 �P−�1/2�+i�

��
	

�=�c

c��c,�,0� + P−�1/2�+i�
.

We use the identity �see Eq. �8.733.1� of �18��

�� + 1�P�+1�x� = �� + 1�xP��x� − �1 − x2�
dP��x�

dx
�F2�

to eliminate P�+1 from c��c ,� ,0� in Eq. �29� and then resort
to the asymptotic expansion �D2�, to arrive at Eq. �F1�.

APPENDIX G: MEAN CURVATURE OF MARGINAL
MODES

When a surface S is perturbed as in Eq. �9�, its total
curvature H=2/R becomes �see Eq. �3.3� of �20��

H� = H − �
tr��s����su� + H divs a� + o��� , �G1�

where aª ��su�T� is a field everywhere tangent to S. By
writing

u = u� + u� , �G2�

where u� is the tangential part of u, and exploiting the iden-
tity ��s���=0, it is possible to recast a as

a = ��su��T� + �su .

It follows from u� ·�=0 and the symmetry of �s� that
��su��T�=−��s��u�, and so we conclude that

a = − ��su��T� + �su ,

whence we obtain that

tr�sa = divs a = �su − divs ��su��T� .

By use of the identity

divs�TTv� = divs T · v + T · �sv ,

which holds for any smooth tensor and vector fields T and v,
and invoking again the symmetry of �s�, we arrive at

divs a = �su − u� · �s� − �s� · u� .

By inserting the decomposition �G2� into Eq. �G1� and not-
ing that

tr��s����su� = �s� · �su� + utr��s��2,

we obtain

H� − H

�
= − �su − utr��s��2. �G3�

When S is a spherical cap of radius R,

tr��s��2 =
2

R2

and Eq. �G3� becomes

H� − H

�
= − �su −

2

R2u .

Since marginal modes solve Eq. �17� with =0, we conclude
that, on marginal modes,

H� − H

�
= − � .

Moreover, by Eq. �25�, �=2c for =0, and by Eq. �29� we
easily conclude that H�=H for all marginal modes with m
�0, which are precisely those effective when the line ten-
sion is negative.
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